This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Saturday, 5 July 2014

CONTOH PENGHITUNGAN MANUAL ANALISIS REGRESI LINEAR BERGANDA (DUA VARIABEL) - 1

Menurut kajian literatur permintaan suatu produk ditentukan oleh harga barang dan pendapatan seseorang. Hasil pengamatan terhadap 12 sampel atas permintaan suatu barang dalam hal ini gula diperoleh data harga minyak goreng dan pendapatan konsumen :




















Langkah-langkah penyelesaiannya:
> Variabel bebas dan variabel tak bebas

  • Variabel Bebas : X1 = Harga minyak goreng dan X2 = Pendapatan konsumen
  • Variabel Tak Bebas : Y = Permintaan minyak goreng
> Persamaan regresi linear berganda : Y' = a + b1X1 + b2X2

> Menentukan nilai konstanta dan koefisien regresi
sehingga

Khusus untuk parameter b1 data adalah dalam ribuan, sehingga hasil tersebut harus dibagi dengan 1000, diperoleh b1 = -0,000582 = -0,001.
Jadi persamaan Regresi Linear Berganda dengan dua variabel bebas adalah :

Y' = 12,7753 - 0,001 X1 - 0,488 X2

> Interpretasi koefisien regresi 
  • Nilai a = 12,7753 artinya jika tidak ada harga minyak goreng dan pendapatan konsumen, namun permintaan akan minyak goreng sebanyak 12,7753.
  • Nilai b1 = -0,001 artinya jika harga minyak goreng meningkat satu rupiah maka akan terjadi penurunan permintaan sebesar 0,001 satuan dimana pendapatan konsumen dianggap tetap.
  • Nilai b2 = - 0,488 artinya jika pendapatan konsumen mengalami kenaikan sebesar satu rupiah maka akan terjadi penurunan permintaan gula sebesar 0,488 satuan dimana harga gula dianggap tetap.
> Menghitung Koefisien Determinasi
Artinya sekitar 94,21% variasi variabel bebas harga minyak goreng X1 dan pendapatan konsumen Xdapat menjelaskan variasi variabel tak bebas permintaan minyak goreng Y.

Note :
b1 yang digunakan -0,582 dan pengali -32 seharusnya -32000 sehingga perkalian keduanya akan memiliki hasil yang sama yaitu (-0,00582 x -32000) = (-0,582 x 32).

> Menghitung Koefisien Korelasi Berganda
Artinya terjadi hubungan yang sangat kuat antara variabel bebas harga minyak goreng X1 dan pendapatan konsumen X2 dengan variabel tak bebas permintaan minyak goreng Y.

> Menghitung Nilai Standart Error Estimate
Jadi standart error persamaan regresi adalah 0,6818, hal ini menunjukkan penyimpangan data-data terhadap garis persamaan regresi linear berganda yang terbentuk. Nilainya cukup kecil.

> Menghitung Nilai Korelasi Parsial
dimana

Next Session adalah Pengujian Koefisien Regresi secara keseluruhan dan secara parsial.

by MEYF








Tuesday, 1 July 2014

ANALISIS REGRESI LINEAR BERGANDA (DUA VARIABEL BEBAS)

Sebelumnya kita sudah membahas mengenai analisis linear sederhana yaitu mengetahui hubungan secara linear antara satu variabel bebas X dengan satu variabel tak bebas Y. Selanjutnya kita akan membahas mengenai hubungan linear antara dua atau lebih variabel bebas X terhadap satu variabel tak bebas Y.
Analisis Linear Berganda bertujuan 
  • Untuk memprediksi nilai dari variabel tak bebas Y jika diketahui nilai variabel-variabel bebas X1, X2, ..., Xn.
  • Untuk mengetahui hubungan antara variavel tak bebas Y jika variabel-variabel bebas X1, X2, ..., Xn mengalami kenaikan atau penurunan. 
  • Untuk mengetahui arah hubungan antara variabel tak bebas dengan variabel-variabel bebas.
Untuk asumsi yang harus dipenuhi sama dengan analisis regresi linear sederhana. Pls see this Asumsi Dasar dan Asumsi Klasik Regresi.

Hal-hal yang harus diketahui dalam Analisis Regresi Linear Berganda :

> Variabel Tak Bebas Y
Variabel yang dipengaruhi.Jumlahnya satu variabel tak bebas.

> Variabel Bebas X1, X2, ..., Xn
Variabel yang mempengaruhi dan jumlahnya dua atau lebih variabel bebas.

> Persamaan Regresi Linear Berganda :

Y' = a + b1 X1 + b2 X2 + ... + bn Xn
dimana
Y'             = variabel tak bebas (nilai yang diprediksikan)
X1, X2, ..., Xn = variabel bebas
a              = konstanta (nilai Y'bila variabel X1,X2,...,Xn=0)
b1, b2, ..., bn = koefisien regresi 

Dalam hal ini kita harus menentukan nilai konstanta a dan koefisien regresi b1, b2,...bn
  
Kita akan ambil kasus variabel X1 dan X2, sehingga persamaan regresi akan menjadi
Y' = a + b1 X1 + b2 X2

Nilai koefisien regresi b1 dan b2 jika 
  • bernilai 0, maka tidak ada pengaruh variabel bebas X1 dan X2 terhadap variabel tak bebas Y.
  • bernilai negatif maka terjadi hubungan yang berbalik arah antara variabel bebas X1 dan X2 dengan variabel tak bebas Y.
  • bernilai positif maka terjadi hubungan yang searah antara variabel bebas X1 dan X2 dengan variabel tak bebas Y.
maka harus tentukan nilai konstanta a dan koefisien regresi b1 dan b2 dengan formula berikut ini :



dimana

> Analisis Koefisien Determinasi (R2)

  • Artinya : Sekitar R2 variasi variabel tidak bebas Y dapat dijelaskan oleh variabel bebas X1 dan X2.
  • Koefisien determinasi digunakan untuk mengetahui prosentase sumbangan pengaruh variabel bebas X1 dan X2 terhadap variabel bebas Y.
  • Jika nilai R2=0 berarti variasi variabel bebas X1 dan X2 tidak sedikitpun dapat menjelaskan variasi variabel tidak bebas Y dalam model tersebut.
  • Jika nilai R2=1 berarti variasi variabel bebas X1 dan X2 dapat menjelaskan dengan SEMPURNA variabel tidak bebas Y dalam model tersebut. 
  • Jadi nilai koefisien determinasi R2 sebesar mungkin.


> Analisis Korelasi Ganda (R)

  • Gunanya adalah untuk mengetahui seberapa besar korelasi yang terjadi antara variabel bebas X1, X2, ..., Xn secara serentak dengan variabel tak bebas Y.
  • Nilainya -1 ≤ R ≤ +1, R semakin mendekati nilai +/- 1 maka semakin kuat hubungannya yang terjadi dan sebaliknya jika R mendekati 0 maka semakin lemah hubungan yang terjadi.

> Korelasi Parsial

Korelasi parsial berarti korelasi antara satu variabel bebas dengan satu variabel tak bebas Y dimana variabel bebas lainnya dianggap tetap atau konstan.
  • r12.Y adalah korelasi antara variabel bebas X1 dan X2 dimana variabel Y dianggap tetap. 

  • rY1.2 adalah korelasi antara variabel bebas X1 dengan variabel tak bebas Y dimana variabel X2 dianggap tetap. 

  • rY2.1 adalah korelasi antara variabel bebas X2 dengan variabel tak bebas Y dimana variabel bebas X1 dianggap tetap.

dimana 

> Standart Error Estimate


Jika nilai kesalahan baku besar, berarti persamaan regresi yang terbentuk kurang tepat untuk melakukan peramalan/prediksi, dan akan memiliki selisih yang besar antara nilai Y kenyataan dengan Y prediksi.

> Uji Koefisien Regresi Secara Bersama-sama (Uji F)
Uji F digunakan untuk mengetahui apakah variabel independen X1 dan X2 secara bersama-sama signifikan berpengaruh terhadap variabel tak bebas Y.

Langkah-langkah uji-F :

1. Hipotesis Uji
Ho : b1 b= 0;(Tidak ada pengaruh variabel bebas Xdan X2 terhadap variabel tak bebas Y)
Ha : $ bi ≠ 0;(Ada pengaruh variabel bebas Xdan X2 terhadap variabel tak bebas Y)

2. Taraf Signifikansi
Tingkat signifikansi yang biasa digunakan adalah 5%, adapun yang lainnya adalah 1% - 10%.


3.  Menentukan Daerah Penolakan Ho (Daerah Kritis)
Bentuk pengujian F berbeda dengan uji sebelumnya. 
Ho akan ditolak jika Fhitung > Ftabel,berarti H1 diterima.
Ho akan diterima jika Fhitung  Ftabel, berarti H1 ditolak.


4. Menentukan Statistik Uji F-hitung

dimana k adalah jumlah variabel dan n adalah jumlah data sampel.

5.  Keputusan (Membandingkan Fhitung dengan Ftabel.

6. Kesimpulan (Apakah ada pengaruh antara variabel bebas X1 dan X2 terhadap variabel tidak bebas Y).

> Uji Koefisien Regresi secara Parsial (Uji-t)
Uji ini digunakan untuk mengetahui apakah dalam model regresi variabel bebas X1 dan X2 secara parsial berpengaruh signifikan terhadap variabel tak bebas Y.

Langkah-langkah pengujiannya adalah sama dengan uji t pada regresi linear sederhana, yaitu:

1.  Menentukan Hipotesis Uji
Ho : bi = 0 
(tidak ada pengaruh antara variabel bebas Xi terhadap variabel tidak bebas Y)
Ha : bi ≠ 0 
(ada pengaruh antara variabel bebas Xi terhadap variabel tidak bebas Y)

2.  Menentukan Tingkat Signifikansi
Tingkat signifikansi yang biasa digunakan adalah 5%, adapun yang lainnya adalah 1% - 10%.

3.  Menentukan Daerah Penolakan Ho (Daerah Kritis)
Bentuk pengujian kita adalah dua arah sehingga gunakan uji-t dua arah :
Ho akan ditolak jika thitung > ttabel atau -(thitung) < -(ttabel),berarti H1 diterima.
Ho akan diterima jika -(thitung) < ttabel < thitung , berarti H1 ditolak.
4.  Menentukan t-hitung

5.  Keputusan (Membandingkan t-hitung dengan t-tabel.

6. Kesimpulan (Apakah ada pengaruh antara variabel bebas Xi terhadap variabel tidak bebas Y).


by MEYF

Reference:
- Mendenhall, Sincinch. 1996. A Second Course In Statistics. Regression Analysis. Fifth Edition. Prentice Hall Internatiomal Edition. 
- Priyatno, Duwi. 2010. Paham Analisa Statistik Data dengan SPSS. Mediakom. Yogyakarta.
- Sugiyono. 2008. Metode Penelitian Bisnis. Alfabeta. Bandung.
- Sugiyono. 2009. Metode Penelitian Kuantitatif Kualitatif dan R & B. Bandung.
- Sugiyono, 2008. Statistik Nonparametris untuk Penelitian. Alfabeta. Bandung.
-Supranto, J. 2004. Analisis Multivariat : Arti dan Interpretasi. Rineka Cipta. Jakarta.
-Walpole, Ronald E. 1992. Pengantar Statistika Edisi ke-3. PT Gramedia Pustaka Utama. Jakarta.